DarkSpace Script Reference

Last Updated Thursday, June 06, 2002
See www.lua.org for information on the scripting language used by DarkSpace. This document is simply information on the additional functions that have been attached to the Lua scripting language.

51
Concepts

51.1
Server/Client

51.2
Object ID’s

51.3
Teams / Factions

51.4
Mission Scripts

62
Callbacks

62.1
onInitialize()

62.2
onRelease()

63
Client Callbacks

63.1
onTeamSelect()

63.2
onTeamSelected(team)

63.3
onShipSelect()

63.4
onShipSelected(shipName)

63.5
onTactical()

63.6
onDeath()

73.7
onCaptured()

73.8
onEndGame()

74
Standard Functions

74.1
scriptAlert(message)

74.2
enableAlerts(enable)

74.3
randomNumber(low, high)

74.4
isClient()

74.5
isServer()

74.6
teamCount()

74.7
getTeamFaction(int n)

84.8
getTeamName(n)

84.9
getName(id)

84.10
getKey(id)

84.11
getClass(id)

84.12
nodeCount([parent])

84.13
getNode(n, [parent])

84.14
isNoun(id)

94.15
isStar(id)

94.16
isAsteroid(id)

94.17
isNebula(id)

94.18
isBody(id)

94.19
getOwner(body)

94.20
setOwner(body, team)*

94.21
isOrbiting(id1, id2)

94.22
enterOrbit(body, orbiting, velocity)*

104.23
breakOrbit(body)*

104.24
IsBeaconed(id)

104.25
isFaction(id, faction)

104.26
getFactionTeam(faction)

104.27
remoteCall(target, scope, call)

104.28
getDistance(id1, id2)

114.29
getFaction(id)

114.30
createSpawn(name, x, y, z)

114.31
getPosition(id)

114.32
setPosition(id, x, y, z)

114.33
spawnNoun(template, location, name, [parent])*

154.34
detachNoun(id)*

154.35
updateNoun(id)*

154.36
startTimer(seconds, script)

165
Interface Functions

165.1
flushChat()

165.2
pushChat(text)

165.3
sendChat(target, scope, text)

175.4
trapKey(key, [script])

175.5
watchKey(key, [script])

175.6
highlightWindow(window)

175.7
hideWindow(window)

185.8
showWindow(window)

185.9
disableWindow(window)

185.10
enableWindow(window)

186
Planet Functions

186.1
planetCount()

186.2
getPlanet(n)

196.3
getPlanetMoral(id)

196.4
getPlanetPopulation(id)

196.5
getPlanetValue(planet)

196.6
getPlanetFlags(planet)

196.7
planetEvent(planet, event, active)*

206.8
revoltPlanet(id, team)*

206.9
hexCount(id)

206.10
getHex(id, hex)

206.11
getHexPosition(id, hex)

206.12
structureCount(id)

206.13
getStructure(id, n)

206.14
getStructureHex(id)

206.15
unitCount(id)

216.16
getUnit(id, n)

216.17
getUnitHex(id, n)

216.18
getRandomPlanet()

216.19
getFriendlyPlanet(faction)

216.20
getEnemyPlanet(faction)

217
Ship Functions

217.1
isShip(id)

217.2
isShipDestroyed(id)

217.3
shipCount()

217.4
getShip(n)

217.5
getHull(id)

227.6
setHull(id)

227.7
getSignature(id)

227.8
useGadget(id, key, target, shift)

227.9
playersShip()

227.10
getShipType(id)

237.11
spawnShip(resource, where, name, team)*

237.12
orderShip(id, target, order)*

237.13
isJumping(id)

237.14
hasMission(id)

238
Gadget Functions

238.1
isGadget(id)

238.2
gadgetCount(ship)

238.3
getGadget(ship, n)

248.4
getGadgetType(gadget)

248.5
getGadgetMount(gadget)

248.6
setGadgetMount(gadget, mount)

248.7
getGadgetAmmo(gadget)

248.8
useGadget2(gadget, target, shift)

259
Jumpgate Functions

259.1
jumpgateCount()

259.2
getJumpgate(n)

259.3
getFriendlyJumpgate(faction)

259.4
getRandomJumpgate()

2510
Mission Functions

2510.1
openThisMission()*

2510.2
openShipMission(ship)*

2510.3
openMission(type, faction, objective)*

2510.4
createMission(type, faction, name, description, duration, prestige, credits, [objectives ...])*

2610.4.1
Mission Types

2610.5
addMissionObjective(handle, objective)*

2610.6
addMissionTrigger(handle, action, script)*

2710.7
setNextMission(current, next)*

2710.8
setMissionState(mission, state)*

2710.9
assignMission(mission, ship)*

2810.10
getMissionOwner(mission)*

2810.11
pushMission(handle)*

2810.12
closeMission(handle)*

2810.13
closeAllMissions()*

2810.14
pushScoutMission(objective, faction)*

2810.15
pushRepairMission(objective)*

2810.16
pushDefendMission(objective, duration)*

2810.17
pushEscortMission(objective, location)*

2810.18
pushCaptureMission(objective, faction)*

* These functions can be called only from the server script code.

1 Concepts

Before scripting your first mission or scenario, read this section to get familiar with several basic concepts.

1.1 Server/Client

Scripts must be designed to run both on the server side and client side. However, many functions in this API will only execute server side for obvious reasons. Those functions have an asterisk (*) appended in this documentation.

Use the isServer() and isClient() functions to determine if the script is running server side or on one of the clients.

1.2 Object ID’s

Objects within the game can be identified by their key or by their name. The most reliable way to find and use an object is by it’s key, which is a 64-bit number that uniquely identifies that object.

Names can be used as well, but in some cases multiple objects may have the same name (i.e. infantry on a planet are all named infantry) additionally finding by name is much slower because it requires a search.

All script functions that require an id as a parameter will firstly assume the id is a key, if not found by the key, then they will search by name for the object.

Any script functions that create an object will always return the key of the object. Use getName() to get the name of an object by it’s key. Use getKey() to get the key for an object by name.

1.3 Teams / Factions

Any one faction can have any number of teams. This is to facilitate the clan/fleet system in game, thus when a clan member joins a game server a team for their clan is dynamically created if needed.

1.4 Mission Scripts

These scripts are designed to provide a story/missions for the players. They are started by a moderator, and can remain running until the server is terminated or reset. Normally, they will initiate some starting conditions then eventually run their course and end. However, mission scripts can also be designed to continuously provide missions and motivation for the players.

Mission scripts can also communicate, since they are all share the same environment. This means global variables and functions can all be shared. However, this can also be a source of problems, since a function from one script might replace a needed function in another script of the same name.

All mission scripts should have their title, requirements, and description at the top of the file.

-- TITLE: ICC Diplomatic Mission

-- REQ: ICC planet, UGTO

-- DESC: Diplomatic mission to a random friendly planet

2 Callbacks

These functions are called by the game into the script after certain events.

2.1 onInitialize()

Perform any initialization here, this is called right after the script is loaded

2.2 onRelease()

Called before the script is release

3 Client Callbacks

The following callbacks are only called when running on the client

3.1 onTeamSelect()

Called before the player selects a team

3.2 onTeamSelected(team)

Called after the player selects a team, the team ID is passed

3.3 onShipSelect()

Called before the player selects a ship

3.4 onShipSelected(shipName)

Called after the player selects a ship

3.5 onTactical()

3.6 onDeath()

Called when the players ship is destroyed

3.7 onCaptured()

Called when the players ship is captured

3.8 onEndGame()

Called when the scenario or mission is completed

4 Standard Functions

4.1 scriptAlert(message)

Send alert message.

4.2 enableAlerts(enable)

This function enables/disables the script error messages. The default is not to display alerts.

4.3 randomNumber(low, high)

This function returns a number that is >= low and <= high.

4.4 isClient()

This function returns a number indicating if the script is running on the client or on the server side. The number 1 is returned if the script is running on the client side, 0 is return if server.

4.5 isServer()

Just like isClient, except this function return 1 if the script is running on the server.

4.6 teamCount()

This function returns the total number of teams in the current context.

4.7 getTeamFaction(int n)

Get the faction for team n. A number is returned which is the faction for the specified team, see table below.

	NEUTRAL
	0

	UGTO
	1

	ICC
	2

	KLUTH
	3

	ICC/UGTO
	4

	UNKNOWN
	5

4.8 getTeamName(n)

Get the name for team n.

4.9 getName(id)

This function returns the name of an object by its key.

4.10 getKey(id)

This function returns the key of the specified object. Since multiple objects can have the same name, you may not always get the correct object by using it’s name.

local mycopia = getKey(“Mycopia”);

4.11 getClass(id)

This function returns the class name of the specified object.

If getClass(“Cadet”) == “ShipTransport” then

-- player is in a transport

end

4.12 nodeCount([parent])

This function returns the number of nodes attached to the specified parent.

If no parent is passed, then the number of nodes attached to the root is returned. Ships, Planets, Asteroids, and stars are all attached to the root.

4.13 getNode(n, [parent])

This function returns the key for node n of parent. Make sure you check returned objects with isNoun(), since not all objects returned are noun objects.

Local n = nodeCount();

Local asteroids = 0;

while n > 0 do

n = n – 1;

if isAsteroid(getNode(n)) then

asteroids = asteroids + 1;

end

end

4.14 isNoun(id)

This function looks for the named noun in the current context and returns 1 or 0 depending if the noun exists or not.

If IsNoun(“Mycopia”) == 1 then

// mycopia found

else

// mycopia not found

end

4.15 isStar(id)

Returns the value of “1” if the object is a star.

4.16 isAsteroid(id)

Returns the value of “1” if the object is an asteroid.

4.17 isNebula(id)

Returns the value of “1” if the object is a nebula.

4.18 isBody(id)

This function returns the value of “1” if the object is a body. If the object doesn’t exist or is not a body it will return “0”. A body is an object that can orbit another object and can be owned by a team. Bodies include ships, planets, and asteroids.

4.19 getOwner(body)

This function returns the owner (team) for a body. See getFaction() if you are interested in getting the faction of an object. This function returns –1 if the object is not a body.

-- get the team that controls mycopia

local team = getOwner(“Mycopia”);

-- translate the team into a faction

local faction = getTeamFaction(team);

4.20 setOwner(body, team)*

This function can force the specified body to be owned by a team. The object must be a body. This is a server side function only.

-- place mycopia under control of the UGTO

setOwner(“Mycopia”, 0);

-- do the same thing, by using the revoltPlanet function

revoltPlanet(“Mycopia”, 0);

4.21 isOrbiting(id1, id2)

This function returns the value of “1” if “id1” is orbiting “id2”.

4.22 enterOrbit(body, orbiting, velocity)*

This function can make a body orbit another body at the specified orbit velocity. The velocity is in radians/second.

4.23 breakOrbit(body)*

This function removes the specified body from it’s orbit.

4.24 IsBeaconed(id)

This function returns 1 if the specified object has a enemy beacon attached.

4.25 isFaction(id, faction)

This function returns 1 if the specified object belongs to that faction, if not then it returns 0.

If isFaction(“Mycopia”, 2)

// Mycopia belongs to the ICC

end

	Faction
	Value

	Neutral
	0

	UGTO
	1

	ICC
	2

	K’Luth
	3

	ICC/UGTO
	4

	UKNOWN
	5

4.26 getFactionTeam(faction)

This function returns to the first available team for the specified faction.

4.27 remoteCall(target, scope, call)

This function sends out a verb through the network connection, when received by the client or server and the verb is executed it calls the specified function within the script.

-- remoteCall(target, scope, call)

remoteCall(“”, 5, “Spawn1()”);

-- the above function sent a verb to the server, thus no target needed to be specified, once the verb arrives on the server side, it will execute the function “Spawn1()” in the server script.

	Scope
	Value

	LOCAL
	0

	GLOBAL
	1

	TEAM
	2

	FACTION
	3

	PRIVATE
	4

	SERVER
	5

	NOT_FACTION
	6

4.28 getDistance(id1, id2)

This function returns the distance between two objects in the current context. –1 is returned if one or both of the objects is not found.

local d = getDistance(“Ship1”, “Mycopia”);
4.29 getFaction(id)

Returns the faction of the specified object.

Local f = getFaction(“Mycopia”);

4.30 createSpawn(name, x, y, z)

This function creates a spawn point in space, which can be used by spawnShip() to create a location on the fly for spawning ships. This function creates the spawn point only on the local context.

-- create a spawn point

local key = createSpawn(“Spawn1”, 50,0,1000);

-- do stuff

-- remove the spawn point when done, otherwise memory leak!

detachNoun(key);

4.31 getPosition(id)

This function gets the 3d position of an object.

local x,y,z = getPosition(“Cadet”);

pushChat(“X:”..x..”, Y:”..y..”, Z:”..z);

4.32 setPosition(id, x, y, z)

This function sets the current position of an object.

setPosition(“Mycopia”, 5000, 0, 10000);

updateNoun(“Mycopia”);

4.33 spawnNoun(template, location, name, [parent])*

This function will create a new object in game using the supplied template (see table below). The spawn object will be created near the specified location. The object can be optionally attached to another object as a child.

The server will automatically send new objects attached to the root to all clients in the area. However, when attaching the spawned object to a existing planet or ship, the parent object will need to be resent to the clients using updateNoun().

If using this function to create a ship instead of using spawnShip(), the ship will have no gadgets attached when created. You will need to use addition spawnNoun() calls to create the equipment for the ship. The same concept applies to structures as well, especially defense bases which must have gadgets attached to the noun.

If the object created is a gadget, and the gadget is not being attached to a ship or structure it is converted automatically into a cargo object containing the gadget.

The following table contains a partial listing of all the available objects that can be used by spawnNoun() as the template argument.

	Misc\
	Asteroid.prt

AsteroidBelt.prt

	Misc\Resource Container\
	NC_Resource.prt

	Nebula\
	Gas Cloud.prt

	Gadgets\
	Active Shields.PRT

Aft Light Armor.prt

Aft Shields.prt

AM Torpedo.prt

AntiMatter Drive.PRT

AntiMatter Mine.prt

AR Missile.prt

Auto Repair.prt

Beacon.PRT

Bio Bomb.prt

Build - ICC.PRT

Build - KLuth.PRT

Build - UGTO.PRT

CL 1000.PRT

CL 2000.PRT

CL 300.prt

CL 500.prt

CL 550.prt

Cloaking Device.prt

Death Beam.PRT

Disruptor.prt

Drive - AFE.prt

Drive - AME.prt

Drive - IE.prt

Drive - PFE.prt

ECCM.prt

ECM.prt

ELF Beam.PRT

ELF.PRT

EMP Cannon.PRT

EMP Mine.prt

EMP.prt

Fighter Bay - ICC.prt

Fighter Bay - UGTO.PRT

Flux Cannon.prt

Flux Wave.PRT

Fore Heavy Armor.prt

Fore Light Armor.prt

Fore Shields.prt

Front Heavy Armor.prt

Full Heavy Armor.prt

Full Light Armor.prt

Full Shields.prt

Fusion Drive.prt

Fusion Reactor 1000.prt

Fusion Reactor 1500.prt

Fusion Reactor.prt

Fusion Torpedo.prt

Gauss Gun.prt

Innards.prt

IP Beam.PRT

IPS Beam.PRT

IT Missile.prt

Jump Disruptor.prt

Larvae Formation.prt

Left Heavy Armor.prt

Left Light Armor.prt

Left Shields.prt

Light Armor.prt

Mining Beam.PRT

MiRV Bomb.prt

Mouth Beam.prt

Nuke Mine.prt

P Cannon.prt

P Cruise Missile.prt

P Torpedo.prt

Psi Cannon.prt

Psi Missile.prt

Pulse Beam.PRT

Pulse Shield.prt

QSB.prt

Railgun.prt

Reactive Shields.PRT

Reactor 1000.prt

Rear Heavy Armor.prt

Rear Light Armor.prt

Reload.prt

Right Heavy Armor.prt

Right Light Armor.prt

Right Shields.prt

Sabot Rocket.prt

Scanner.prt

Script.PRT

Spawn.PRT

Tachyon Drive.prt

Tractor Beam.prt

	Ships\
	ICC\Cruiser\M230 A\NC_M230A.PRT

ICC\Cruiser\M235 I\NC_M235I.PRT

ICC\Cruiser\M239 J\NC_M239J.PRT

ICC\Cruiser\M245 A\NC_M245A.PRT

ICC\Cruiser\M247 M\NC_M247M.PRT

ICC\Cruiser\M248C\NC_M248C.PRT

ICC\Destroyer\M190 A\NC_M190A.PRT

ICC\Destroyer\M190 B\NC_M190B.PRT

ICC\Destroyer\M192 F\NC_M192F.PRT

ICC\Destroyer\Old\M194A\NC_M194A.PRT

ICC\Dreadnought\M400-A\NC_M400A.PRT

ICC\Dreadnought\M400-B\NC_M400B.prt

ICC\Dreadnought\M410-A\NC_M410A.prt

ICC\Dreadnought\Old\M300\NC_M300.prt

ICC\Dreadnought\Old\M310\NC_M310.prt

ICC\Engineering\MR 110\NC_MR110.PRT

ICC\Engineering\MR 115\NC_MR115.prt

ICC\Engineering\MR 125\NC_MR125.PRT

ICC\Fighter\M7\NC_M7.PRT

ICC\Frigate\M40S\NC_M40S.prt

ICC\Frigate\M42B\NC_M42B.prt

ICC\Frigate\M44A\NC_M44A.prt

ICC\Frigate\M45B\NC_M45B.prt

ICC\Miner\ME 1522\NC_ME1522.prt

ICC\Scout\M21 A\NC_M21A.prt

ICC\Scout\M21 B\NC_M21B.prt

ICC\Scout\M21 C\NC_M21C.prt

ICC\Scout\M22 B\NC_M22B.prt

ICC\Station\M2200 A\NC_M2200A.prt

ICC\Supply\M S40 A\NC_MS40A.prt

ICC\Supply\M S42 A\NC_MS42A.prt

ICC\Transport\M2111 Transport\NC_M2111.PRT

ICC\Transport\M2122 Transpoer\NC_M2122.PRT

Kluth\Fighter\Larvae\NC_Larvae.PRT

Kluth\Frigate\Proboscis\NC_Proboscis.PRT

Kluth\miner\Extractor\NC_Extractor.prt

Moderator\NC_ORB.PRT

UGTO\Cruiser\ST-74 Torpedo Cruiser\NC_ST74.prt

UGTO\Cruiser\ST-75 Interdictor\NC_ST75.PRT

UGTO\Cruiser\ST-76 Battle Cruiser\NC_ST76.prt

UGTO\Cruiser\ST-79 Missile Cruiser\NC_ST79.prt

UGTO\Cruiser\ST-80 Bomber\NC_ST80.PRT

UGTO\Destroyer\ST-10 Gunboat\NC_ST10.prt

UGTO\Destroyer\ST-11 Missile Buster\NC_ST11.prt

UGTO\Destroyer\ST-14 Assault\NC_ST14.prt

UGTO\Dreadnought\ST-101 Super Carrier\NC_ST101.prt

UGTO\Dreadnought\ST-105 Battle Platform\NC_ST105.PRT

UGTO\Dreadnought\ST-106 Command Center\NC_ST106.prt

UGTO\Dreadnought\ST-111 Elite Assault\NC_ST111.prt

UGTO\Engineering\ST-7000\NC_ST7000.PRT

UGTO\Engineering\ST-7010\NC_ST7010.prt

UGTO\Fighter\B-27 Fighter\NC_B27.PRT

UGTO\Frigate\ST-5 Bomber\NC_ST5.prt

UGTO\Frigate\ST-6 Interceptor\NC_ST6.prt

UGTO\Frigate\ST-7 Minelayer\NC_ST7.prt

UGTO\Frigate\ST-8 Harrier\NC_ST8.prt

UGTO\Miner\SE-7501\NC_SE7501.prt

	Structures\
	Common\AntiSensor Base.prt

Common\Automated Farm.prt

Common\Deep Core Mine.prt

Common\Defense Base.prt

Common\Depot.prt

Common\Dome.prt

Common\Fighter Base.PRT

Common\Fusion Generator.prt

Common\Hydro Farm.prt

Common\Interdictor Base.prt

Common\Mine.prt

Common\Research Lab.prt

Common\Sensor Base.prt

Common\Solar Generator.prt

ICC\Barracks.PRT

ICC\Colony Hub.PRT

ICC\Factory.PRT

ICC\Shield Generator.prt

ICC\StarPort.PRT

KLuth\Barracks.prt

KLuth\Colony Hub.prt

KLuth\Factory.prt

KLuth\StarPort.prt

UGTO\Barracks.prt

UGTO\Colony Hub.prt

UGTO\Factory.prt

UGTO\StarPort.prt

	Units\
	Infantry.prt

K’Luth Infantry.prt

4.34 detachNoun(id)*

This function detaches the object from the universe. Use this function to remove createSpawn() objects after you are done, otherwise the object will stay attached to the universe causing a memory leak.

4.35 updateNoun(id)*

This function forces a new copy of the specified object to be sent to all clients in the local area of the object. Some functions such as setHull() and spawnNoun() will modify the state of the game, but not send those changes to all clients affected. This function allows the server script to send an updated version of an object to all clients in the area.

-- change the ships hull to 50%

setHull(“TransportA”, 50);

-- send the updated object to all clients near the transport

updateNoun(“TransportA”);

4.36 startTimer(seconds, script)

This function begins a timer which will call a function in n seconds, once called the timer is destroyed.

startTimer(30, “onTimer()”);

function onTimer()

-- do something

-- setup another timer to check again in 30 seconds

startTimer(30, “onTimer()”);

end

5 Interface Functions

5.1 flushChat()

This function clears all chat from the chat buffer.

function startTutorial()

flushChat();

pushChat("<Color;00ffff>Tutorial: Basic Command and Control</Color>\nPressing the <Color;00ffff>F4</Color> key will display the message log, allowing you review the tutorial text.");

pushChat("\nPress the <Color;00ffff>ENTER</Color> key to begin the tutorial.\n");

trapKey(13, "onStep1()");

end

5.2 pushChat(text)

This function sends a chat message to the local chat buffer.

function onStep2()

pushChat("Now for a closer look you can zoom the camera towards your ship with either the <color;00ffff>Mouse Wheel</color> or by pressing the <color;00ffff>Z</color> key.\n\nYou can zoom out for an overview of the battle field with <color;00ffff>X</color> key or again by using your mouse wheel in the other direction.");

pushChat("\nPress the <Color;00ffff>ENTER</Color> key to continue.\n");

trapKey(13, "onStep3()");

end

5.3 sendChat(target, scope, text)

This function sends a chat message to the specified target and scope. See the following table for valid scopes.

	LOCAL
	0

	GLOBAL
	1

	TEAM
	2

	FACTION
	3

	PRIVATE
	4

	SERVER
	5

	NOT_FACTION
	6

-- send private chat message

sendChat(“Cadet”, 4, “This is a private message!”);

-- send message to faction that controls the planet “Mycopia”

sendChat(“Mycopia”, 3, “Faction message”);

-- send message to the team that controls “Mycopia”

sendChat(“Mycopia”, 2, “Team message!”);

5.4 trapKey(key, [script])

This function creates a trap for a certain key, when that key is pressed a function within the script is called by the game. The key will stay trapped, until this function is called again with the same key but no second argument.

-- trap the enter key, call the function “onStep14” when the enter key is pressed

trapKey(13, "onStep14()");

-- untrap the enter key

trapKey(13);

5.5 watchKey(key, [script])

This function is like trapKey, except it allows the keyboard message to be passed onto the game.

5.6 highlightWindow(window)

This function places a rectangle around the specific window.

function onStep15()

highlightWindow("CargoButtons");

pushChat("The highlighted area is where your cargo icons are displayed. Press the <color;00ffff>U</color> key to unload an infantry unit onto the planet's surface. ");

watchKey("U", "onStep16()");

end

5.7 hideWindow(window)

This function hides the specified window.

function onStep17()

hideWindow("ViewTactical");

showWindow("ViewEngineering");

enableWindow("ButtonEngineering");

pushChat("This is the <color;00ffff>ENGINEERING</color> view. This view shows you the current status of your ship. You can toggle the engineering view with the <color;00ffff>F3</color> key.");

pushChat("\nPress the <Color;00ffff>ENTER</Color> key to continue.\n");

trapKey(13, "onStep18()");

end

5.8 showWindow(window)

This function shows the specified window, see hideWindow.

5.9 disableWindow(window)

This function disables a window.

function onStep1()

-- Disable the different screen buttons so we can control the user

disableWindow("ButtonHelp");

disableWindow("ButtonNavigation");

disableWindow("ButtonEngineering");

pushChat("You are now in the <color;00ffff>TACTICAL</color> view, this is where you will spend most of your time while playing DarkSpace. Your ship is always displayed in the center of the screen.");

pushChat("\nFirst, begin by holding down the <color;00ffff>right button</color> on your mouse and then <color;00ffff>dragging</color> your mouse around. This changes your camera position around your ship, allowing you to view your ship from any direction.");

pushChat("\nPress the <Color;00ffff>ENTER</Color> key to continue.\n");

trapKey(13, "onStep2()");

end

5.10 enableWindow(window)

This function enables a window. see disableWindow.

6 Planet Functions

6.1 planetCount()

This function returns the total number of planets in the current system.

local planets = planetCount();

6.2 getPlanet(n)

This function gets the key of the planet n.

local key = getPlanet(0);

6.3 getPlanetMoral(id)

Returns the moral of a planet, 0 – 100.

-- Usage

local moral = getPlanetMoral(“Mycopia”);

6.4 getPlanetPopulation(id)

Returns the population of the given planet.

6.5 getPlanetValue(planet)

This function returns the value of a planet.

6.6 getPlanetFlags(planet)

This function returns the flags of a planet, see the table below for planet flags.

	HYDROGEN
	0x01

	OXYGEN
	0x02

	METALS
	0x04

	HEAVY_METALS
	0X08

	CYRO_METALS
	0X10

	HYPER_MATTER
	0X20

	DARK_MATTER
	0X40

	URDANIAM
	0X80

	PLAGUE
	0X100

	REVOLUTION
	0X200

	RESESSION
	0X400

	STRIKE
	0X800

	BOOM
	0X1000

	SMUGGLERS
	0X2000

	MINING_FIND
	0X4000

	FOOD_SHORT
	0X8000

	POWER_SHORT
	0X10000

	WORKER_SHORT
	0X20000

6.7 planetEvent(planet, event, active)*

This function generates a planet event, see the table below for available events. The “active” argument determines if your turning on the event, or turning it off.

All of these events are generated randomly by the planet code, use this function to force an event to occur.

-- Start plague on Mycopia

planetEvent(“Mycopia”, 0, 1);

-- stop strike on Mycopia

planetEvent(“Mycopia”, 3, 0);

	PLAGUE
	0

	REVOLUTION
	1

	RESESSION
	2

	STRIKE
	3

	BOOM
	4

	SMUGGLERS
	5

	MINING_FIND
	6

	FOOD_SHORT*
	7

	POWER_SHORT*
	8

	WORKER_SHORT*
	9

* These events are automatically set by the internal planet logic. If you generate these events, they might be turned back off the next turn by the planet logic.

6.8 revoltPlanet(id, team)*

Change planet to be controlled by the specified faction. The server script can only call this function.

6.9 hexCount(id)

Returns the number of hexes on the specified planet.

6.10 getHex(id, hex)

Returns the object name, if any, in the specified hex on the planet.

6.11 getHexPosition(id, hex)

Returns the X,Y,Z position of the hex on the planet.

-- Get the XYZ of hex 1 from the planet mycopia

local x,y,z = getHexPosition(“Mycopia”, 1);
6.12 structureCount(id)

Returns the number of structures on a planet.

6.13 getStructure(id, n)

Returns structure n from the specified planet.

6.14 getStructureHex(id)

Returns the hex currently assigned to structure n

6.15 unitCount(id)

Returns the number of ground units on the specified planet.

6.16 getUnit(id, n)

Returns the name of unit n on the specified planet.

6.17 getUnitHex(id, n)

Returns the hex of the specified unit.

6.18 getRandomPlanet()

This function returns a inhabitable random planet from the current system.

6.19 getFriendlyPlanet(faction)

This function returns a random planet in the current system friendly to the specified faction.

6.20 getEnemyPlanet(faction)

This function returns a random enemy planet.

7 Ship Functions

7.1 isShip(id)

This function, like isNoun(), returns a value of “1” is the object is a ship.

7.2 isShipDestroyed(id)

This function, like isNoun looks for the named object, if not found then it returns 1, if found and the object is a ship and is not destroy it returns 0, otherwise 1.

7.3 shipCount()

This function returns the total number of ships in the current system.

local ships = shipCount();

7.4 getShip(n)

This function returns the key of ship n in the current system.

local key = getShip(1);

7.5 getHull(id)

This function returns the hull percentage of a ship.

local h = getHull(“Cadet”);

7.6 setHull(id)

This function is used to set the hull of the specified ship. Returns 1 if hull is changed, returns nil if object not found or object is not a ship.

-- set the hull to 50%

SetHull(“Cadet”, 50);

7.7 getSignature(id)

This function returns the current signature of a ship.

local s = getSignature(“Cadet”);

7.8 useGadget(id, key, target, shift)

This function will use a gadget on the specified ship. Returns the number of gadgets that were used.

-- useGadget(ship, key, target, shift)

useGadget(“Cadet”, “K”, nil, 0);

7.9 playersShip()

This function returns the name of the players ship, if any.

ship = playerShip();

pushChat(“Welcome to DarkSpace “..ship);

7.10 getShipType(id)

This function returns the type of ship as a number value, the chart below maps the numbers to the actual classes of ships in DarkSpace.

local shipType = getShipType(“Cadet”);

	0
	Fighter

	1
	Scout

	2
	Frigate

	3
	Destroyer

	4
	Cruiser

	5
	Dreadnaught

	6
	Engineer

	7
	Supply

	8
	Transport

	9
	Station

	10
	Platform

	11
	Unknown

7.11 spawnShip(resource, where, name, team)*

This function creates a noun for the specified ship in the context. “where” can be a spawn point or a planet or other object that is currently in-game.

-- spawnShip(resource, where, name, team)

local key = SpawnShip(“ships/ICC/Engineering/MR 110/SC_MR110”, “Spawn1”, “Eng Alpha”, 1);

7.12 orderShip(id, target, order)*

This function sets the order for the specified ship.

-- orderShip(name, target, order)

orderShip(“Eng Alpha”, “Mycopia”, 2);

	Order
	Value

	NOORDER
	0

	ATTACK
	1

	DEFEND
	2

	CAPTURE
	3

	MOVE
	4

	RELOAD
	5

	BEACON
	6

	HOLD
	7

7.13 isJumping(id)

This function returns 1 if the ship is currently in jump, or 0 if not.

7.14 hasMission(id)

This function returns a value of 1 if the ship currently has a mission. The value is 0 if the ship currently does not have a mission.

8 Gadget Functions

8.1 isGadget(id)

Returns the value of “1” if the item is a gadget, otherwise it returns “0”.

8.2 gadgetCount(ship)

This function returns the number of gadgets attached to the specified ship.

8.3 getGadget(ship, n)

This function returns the key of gadget n on the specified ship.

8.4 getGadgetType(gadget)

This function returns the type of gadget from it’s key. See the following table for the current types of gadgets.

	UKNOWN
	0

	DRIVE
	1

	SPECIAL
	2

	JUMP_DRIVE
	3

	WEAPON
	4

	WEAPON_HEAVY
	5

	WEAPON_BEAM
	6

	WEAPON_HEAVY_BEAM
	7

	ARMOR
	8

	SHIELDS
	9

	FIGHTER_BAY
	10

	DRONE_BAY
	11

	MINE
	12

	CLOAK
	13

	HULL
	14

	INTERDICTOR
	15

	CRUISE_MISSILE
	16

	ORB
	17

8.5 getGadgetMount(gadget)

This function returns the facing of a gadget. See the table below.

	FRONT
	0

	RIGHT
	1

	LEFT
	2

	BACK
	3

	FULL
	4

8.6 setGadgetMount(gadget, mount)

This function sets the mount for a gadget.

8.7 getGadgetAmmo(gadget)

This function returns the amount of ammo remaining if the gadget is a weapon that requires ammo, otherwise –1 is returned.

8.8 useGadget2(gadget, target, shift)

This function will use the specified gadget on the target. This function takes a gadget key, unlike the older useGadget() function which uses a gadget based on it’s hotkey.

9 Jumpgate Functions

9.1 jumpgateCount()

This function returns the number of jumpgates in the current system.

9.2 getJumpgate(n)

This function gets the key of jumpgate n.

9.3 getFriendlyJumpgate(faction)

This function returns the name of the first friendly jumpgate. If none are found, it returns a random neutral jumpgate.

9.4 getRandomJumpgate()

Returns a random jumpgate.

10 Mission Functions

All mission functions should be called on the server script only. If any mission functions are called from the client side, they will fail.

10.1 openThisMission()*

This function returns a handle for the mission, if any that is calling this script code. CloseMission() should be called after you are done to free up the handle.

10.2 openShipMission(ship)*

This function opens the mission assigned, if any, of the specified ship. If no mission is currently assigned to the ship, then the handle will be 0.

mh = openShipMission(“Cadet”);

10.3 openMission(type, faction, objective)*

Open the specified mission by type, faction, and objective. No need to call pushMission() since this mission is already on the mission stack if found. This function returns the mission handle or 0 if no mission was found.

10.4 createMission(type, faction, name, description, duration, prestige, credits, [objectives ...])*

This function creates a new mission. You must call closeMission() with the returned handle, otherwise a memory leak will occur.

-- Usage

mh = createMission(0, 1, “Scout Mycopia”, “Orbit mycopia and scan for enemy ships”, 300, 5, 1000, “Mycopia”);

10.4.1 Mission Types

This table contains all the currently valid mission types. Depending on the type of mission, different numbers of objectives may be required. Use AddMissionObjective() to add objectives to the current mission object.

Note: Different types of missions can only be assigned to certain types of ships.

	VALUE
	TYPE
	SHIPS

	-1
	INVALID
	*

	0
	SCOUT - move within 500gu of objective[0]
	SCOUT, FRIGATE

	1
	BEACON – Attach beacon to objective[0]
	SCOUT

	2
	DESTROY – Destroy objective[0]
	DESTROYER, CRUISER, DREAD

	3
	ESCORT – Escort objective[0] to objective[1]
	DESTROYER, CRUISER, DREAD

	4
	CAPTURE – Capture objective[0]
	TRANSPORT

	5
	DEFEND – Defend objective[0]
	DESTROYER, CRUISER, DREAD

	6
	TRANSFER – Move objective[0] to objective[1]
	ALL

	7
	AQUIRE – Find and load objective[0]
	ALL

	8
	ORBIT – Orbit objective[0]
	ALL

	9
	REPAIR – Repair objective[0]
	SUPPLY

	10
	SCRIPT
	ALL

	11
	WAIT – Wait until objective[0] is within 100gu
	ALL

	12
	SLEEP – Wait for duration to expire
	ALL

	13
	GOTO – Get within 100gu of objective[0]
	ALL

10.5 addMissionObjective(handle, objective)*

Add an objective to the current mission. Different missions require different numbers of objectives, see the mission types in the CreateMission() function.

Returns 1 on success, 0 on failure.

10.6 addMissionTrigger(handle, action, script)*

Add a trigger to the current mission. These triggers can call additional script code, to create additional missions or react to a mission being completed, failed, aborted, or assigned.

AddTrigger(0, “initializeMission()”);

	ACTION
	VALUE

	INITIALIZE
	0

	ASSIGNED
	1

	ABORTED
	2

	COMPLETED
	3

	FAILED
	4

10.7 setNextMission(current, next)*

Set the next mission, which is activated when the current mission is completed. This is useful to setup a series of missions to be accomplished by the same ship in a specific order.

-- create the missions

current = createMission(0, 1, “Scout Mycopia”, “Orbit mycopia and scan for enemy ships”, 300, 5, 1000, “Mycopia”);

next = createMission(1, 1, “Beacon Mycopia”, “Drop beacon onto the surface of mycopia”, 300, 5, 1000, “Mycopia”);

setNextMission(current, next);

pushMission(current);
-- don’t push next, since it’s attached to this mission

-- release the handles, so we don’t leak memory

closeAllMissions();

10.8 setMissionState(mission, state)*

This function changes the state of a mission, thus calling any assigned triggers. You can use this function to override the internal logic of the mission class if your script is used to determine the success or failure of a mission.

Setting a mission active is best done using assignMission(). Setting a mission active without being attached to a ship will cause the mission to go inactive immediately.

	VALUE
	STATE

	0
	INACTIVE

	1
	ACTIVE

	2
	FAIL

	3
	COMPLETE

-- fail the mission

setMissionState(mh, 2);

-- complete the mission

setMissionState(mh, 3);

10.9 assignMission(mission, ship)*

Assign a mission to the specific ship. If the ship already has a mission assigned, this function will fail. This function should be called from the server script only, it will send the assigned mission to the clients ship as well.

10.10 getMissionOwner(mission)*

This function returns the ship key assigned to the specified mission, if any.

10.11 pushMission(handle)*

Push the specified mission onto the mission stack.

10.12 closeMission(handle)*

Closes the specified mission handle, releasing any memory allocated.

10.13 closeAllMissions()*

This releases all currently open mission handles.

10.14 pushScoutMission(objective, faction)*

This function creates a scout mission to the specified objective. Returns 1 on success, 0 on failure.

PushScoutMission(“Mycopia”, 0);

10.15 pushRepairMission(objective)*

Creates and pushes a repair mission for the specified objective.

10.16 pushDefendMission(objective, duration)*

Push a defend mission for the specified objective. Defend missions can be accepted by Destroyers, Cruisers, and Dreads.

10.17 pushEscortMission(objective, location)*

Pushes a mission to escort objective to the specified location.

10.18 pushCaptureMission(objective, faction)*

Creates and pushes a capture mission for the specified objective. Capture missions can only be taken by transports.

